在立体声视觉中,自相似或平淡的区域可能使得很难匹配两个图像之间的补丁。基于主动立体声的方法通过在场景上投射伪随机模式来减轻此问题,以便可以在没有歧义的情况下识别图像对的每个贴片。但是,投影模式显着改变了图像的外观。如果这种模式充当对抗性噪声的一种形式,则可能对基于深度学习的方法的性能产生负面影响,这现在是密集立体声视觉的事实上的标准。在本文中,我们提出了Active-Passive Simstereo数据集和相应的基准测试,以评估立体声匹配算法的被动立体声和活动立体声图像之间的性能差距。使用提出的基准测试和额外的消融研究,我们表明特征提取和匹配的模块选择了20个选择的基于深度学习的立体声匹配方法,可以推广到主动立体声,没有问题。但是,由于二十个体系结构(ACVNet,Cascadestereo和Stereonet)中三个的差异细化模块由于对输入图像的外观的依赖而受到主动立体声模式的负面影响。
translated by 谷歌翻译
立体声视觉最新发展的主要重点是如何在被动立体声视觉中获得准确的密集差异图。与被动立体声相比,主动视觉系统可以更准确地估计致密差异。但是,子像素准确的差异估计仍然是一个空的问题,几乎没有得到关注。在本文中,我们提出了一种新的学习策略,以训练神经网络,以估计半密集的主动立体声视觉的高质量子像素差异图。关键的见解是,如果神经网络能够共同学习如何完善差异图,同时使像素不足以纠正差异估计值,那么它们的准确性就可以翻倍。我们的方法基于贝叶斯建模,在该模型中,经过验证和无效的像素由它们的随机属性定义,从而使模型可以学习如何自行选择哪些像素值得关注。使用主动立体声数据集(例如Active-Passive Simstereo),我们证明了所提出的方法优于当前最新的活动立体声模型。我们还证明,所提出的方法与米德尔伯里数据集上的最新被动立体声模型进行了优惠比较。
translated by 谷歌翻译
大多数杂草物种都会通过竞争高价值作物所需的营养而产生对农业生产力的不利影响。手动除草对于大型种植区不实用。已经开展了许多研究,为农业作物制定了自动杂草管理系统。在这个过程中,其中一个主要任务是识别图像中的杂草。但是,杂草的认可是一个具有挑战性的任务。它是因为杂草和作物植物的颜色,纹理和形状类似,可以通过成像条件,当记录图像时的成像条件,地理或天气条件进一步加剧。先进的机器学习技术可用于从图像中识别杂草。在本文中,我们调查了五个最先进的深神经网络,即VGG16,Reset-50,Inception-V3,Inception-Resnet-V2和MobileNetv2,并评估其杂草识别的性能。我们使用了多种实验设置和多个数据集合组合。特别是,我们通过组合几个较小的数据集,通过数据增强构成了一个大型DataSet,缓解了类别不平衡,并在基于深度神经网络的基准测试中使用此数据集。我们通过保留预先训练的权重来调查使用转移学习技术来利用作物和杂草数据集的图像提取特征和微调它们。我们发现VGG16比小规模数据集更好地执行,而ResET-50比其他大型数据集上的其他深网络更好地执行。
translated by 谷歌翻译
基于成本的图像补丁匹配是计算机视觉,摄影测量和遥感的各种技术的核心。当需要在源图像和目标图像中的参考补丁之间的子像素视差时,必须内插的成本函数或目标图像。虽然基于成本的插值是最容易实现的,但是多个工程已经表明,基于图像的插值可以提高子像素匹配的准确性,但通常以昂贵的搜索过程的成本。然而,这是有问题的,特别是对于诸如立体声匹配或光学流量计算的非常计算密集型应用。在本文中,我们示出了用于一维匹配的壳体差异计算的闭合形式公式,例如,在搜索空间的纠正立体声图像的情况下,在使用标准的NCC,SSD和SAD时存在一个维度。成本函数。然后,我们展示了如何将所提出的公式概括为高维搜索空间的情况,这是未经化的立体声匹配和光学流量提取所必需的。我们还将结果与传统的成本卷插值公式以及最先进的成本的细化方法进行比较,并表明所提出的公式对基于最先进的成本提供了较小的改进在一维搜索空间的情况下的方法,以及搜索空间是二维时的显着改进。
translated by 谷歌翻译
现代深度学习方法构成了令人难以置信的强大工具,以解决无数的挑战问题。然而,由于深度学习方法作为黑匣子运作,因此与其预测相关的不确定性往往是挑战量化。贝叶斯统计数据提供了一种形式主义来理解和量化与深度神经网络预测相关的不确定性。本教程概述了相关文献和完整的工具集,用于设计,实施,列车,使用和评估贝叶斯神经网络,即使用贝叶斯方法培训的随机人工神经网络。
translated by 谷歌翻译
Research on automated essay scoring has become increasing important because it serves as a method for evaluating students' written-responses at scale. Scalable methods for scoring written responses are needed as students migrate to online learning environments resulting in the need to evaluate large numbers of written-response assessments. The purpose of this study is to describe and evaluate three active learning methods than can be used to minimize the number of essays that must be scored by human raters while still providing the data needed to train a modern automated essay scoring system. The three active learning methods are the uncertainty-based, the topological-based, and the hybrid method. These three methods were used to select essays included as part of the Automated Student Assessment Prize competition that were then classified using a scoring model that was training with the bidirectional encoder representations from transformer language model. All three active learning methods produced strong results, with the topological-based method producing the most efficient classification. Growth rate accuracy was also evaluated. The active learning methods produced different levels of efficiency under different sample size allocations but, overall, all three methods were highly efficient and produced classifications that were similar to one another.
translated by 谷歌翻译
Osteoarthritis (OA) is the most prevalent chronic joint disease worldwide, where knee OA takes more than 80% of commonly affected joints. Knee OA is not a curable disease yet, and it affects large columns of patients, making it costly to patients and healthcare systems. Etiology, diagnosis, and treatment of knee OA might be argued by variability in its clinical and physical manifestations. Although knee OA carries a list of well-known terminology aiming to standardize the nomenclature of the diagnosis, prognosis, treatment, and clinical outcomes of the chronic joint disease, in practice there is a wide range of terminology associated with knee OA across different data sources, including but not limited to biomedical literature, clinical notes, healthcare literacy, and health-related social media. Among these data sources, the scientific articles published in the biomedical literature usually make a principled pipeline to study disease. Rapid yet, accurate text mining on large-scale scientific literature may discover novel knowledge and terminology to better understand knee OA and to improve the quality of knee OA diagnosis, prevention, and treatment. The present works aim to utilize artificial neural network strategies to automatically extract vocabularies associated with knee OA diseases. Our finding indicates the feasibility of developing word embedding neural networks for autonomous keyword extraction and abstraction of knee OA.
translated by 谷歌翻译
Spatial understanding is a fundamental aspect of computer vision and integral for human-level reasoning about images, making it an important component for grounded language understanding. While recent large-scale text-to-image synthesis (T2I) models have shown unprecedented improvements in photorealism, it is unclear whether they have reliable spatial understanding capabilities. We investigate the ability of T2I models to generate correct spatial relationships among objects and present VISOR, an evaluation metric that captures how accurately the spatial relationship described in text is generated in the image. To benchmark existing models, we introduce a large-scale challenge dataset SR2D that contains sentences describing two objects and the spatial relationship between them. We construct and harness an automated evaluation pipeline that employs computer vision to recognize objects and their spatial relationships, and we employ it in a large-scale evaluation of T2I models. Our experiments reveal a surprising finding that, although recent state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations such as left/right/above/below. Our analyses demonstrate several biases and artifacts of T2I models such as the difficulty with generating multiple objects, a bias towards generating the first object mentioned, spatially inconsistent outputs for equivalent relationships, and a correlation between object co-occurrence and spatial understanding capabilities. We conduct a human study that shows the alignment between VISOR and human judgment about spatial understanding. We offer the SR2D dataset and the VISOR metric to the community in support of T2I spatial reasoning research.
translated by 谷歌翻译
Vision transformers (ViTs) are quickly becoming the de-facto architecture for computer vision, yet we understand very little about why they work and what they learn. While existing studies visually analyze the mechanisms of convolutional neural networks, an analogous exploration of ViTs remains challenging. In this paper, we first address the obstacles to performing visualizations on ViTs. Assisted by these solutions, we observe that neurons in ViTs trained with language model supervision (e.g., CLIP) are activated by semantic concepts rather than visual features. We also explore the underlying differences between ViTs and CNNs, and we find that transformers detect image background features, just like their convolutional counterparts, but their predictions depend far less on high-frequency information. On the other hand, both architecture types behave similarly in the way features progress from abstract patterns in early layers to concrete objects in late layers. In addition, we show that ViTs maintain spatial information in all layers except the final layer. In contrast to previous works, we show that the last layer most likely discards the spatial information and behaves as a learned global pooling operation. Finally, we conduct large-scale visualizations on a wide range of ViT variants, including DeiT, CoaT, ConViT, PiT, Swin, and Twin, to validate the effectiveness of our method.
translated by 谷歌翻译
GTFLAT, as a game theory-based add-on, addresses an important research question: How can a federated learning algorithm achieve better performance and training efficiency by setting more effective adaptive weights for averaging in the model aggregation phase? The main objectives for the ideal method of answering the question are: (1) empowering federated learning algorithms to reach better performance in fewer communication rounds, notably in the face of heterogeneous scenarios, and last but not least, (2) being easy to use alongside the state-of-the-art federated learning algorithms as a new module. To this end, GTFLAT models the averaging task as a strategic game among active users. Then it proposes a systematic solution based on the population game and evolutionary dynamics to find the equilibrium. In contrast with existing approaches that impose the weights on the participants, GTFLAT concludes a self-enforcement agreement among clients in a way that none of them is motivated to deviate from it individually. The results reveal that, on average, using GTFLAT increases the top-1 test accuracy by 1.38%, while it needs 21.06% fewer communication rounds to reach the accuracy.
translated by 谷歌翻译